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Equity Forward Return from Derivatives

Abstract

This paper develops a theory of forward returns for an equity index. We obtain the forward

returns using information from derivatives markets, including index option prices and gammas,

VIX-futures, and prices of VIX-options. We document a pro-cyclical term structure of S&P500

forward returns and a robust short-term reversal pattern. Moreover, by designing and implementing

a market-timing strategy, we demonstrate that forward equity returns provide real-time trading

signals with substantial economic value.

Keywords: Forward return, index option, VIX-derivatives, autocorrelation, reversal

JEL Classification: G1, G12, G13



“The field of finance can be built, or as I will argue be rebuilt, on the basis of

‘observable’ magnitudes. I still remember the teasing we financial economists, Harry

Markowitz, William Sharpe, and I, had to put up with from the physicists and chemists

in Stockholm when we concede that the basic unit of our research, the expected rate of

return, was not actually observable.”

— (Miller, 1999, page 100)

1 Introduction

As argued by Miller (1999), “simply averaging the returns of the last few years, along the lines

of the examples in the Markowitz paper (and later book), won’t yield reliable estimates of the

return expected in the future” (page 97). Since the derivatives market provides forward-looking

information related to the expected return, previous studies have successfully derived the expected

spot return from derivatives markets. For instance, Martin (2017); Chabi-Yo and Loudis (2020) for

the aggregate market; Martin and Wagner (2019); Kadan and Tang (2020) for individual stocks;

and Kremens and Martin (2019) for currencies.

In this paper, we introduce the notion of a forward equity return and establish its relationship

to certain derivative securities. Specifically, for any positive number n, the forward return

Et [Rt+n→t+n+1] is the expectation conditional on time t of the future return Rt+n→t+n+1 of the

underlying asset over a future time interval from t + n to t + n+ 1. We develop a methodology

to measure forward returns implied in information from the derivatives market, including prices

of index options and VIX-derivatives. Furthermore, we can derive all higher moments of future

returns using derivatives market information. Our approach even reveals new information about

spot returns from the derivatives not previously studied in the literature, such as the conditional

correlation between two spot returns and the joint distribution between two consecutive returns

or two spot returns.1 Importantly, our approach does not require us to impose any distributional

1Remarkable exceptions in the literature include Martin (2021), and Chabi-Yo (2019). We will explain these related
studies and the distinct features of our paper.
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assumptions on the aggregate equity market.

Ultimately, we can construct an entire term structure of forward returns starting from the

expected spot return when n = 0.2 Knowing such a term structure of forward returns, we

can investigate how a future return Rt+n→t+n+1 dynamically evolves with market information

available at time t. As an example, what is the autocorrelation coefficient between Rt+n→t+n+1

and Rt+n+1→t+n+2? By answering this question, we can study the momentum or reversal patten

of the equity market from a forward-looking derivative perspective.3 Similarly, we can design

dynamic trading strategies based on the conditional view of the aggregate market’s future returns

from derivatives.

We first express the equity index’s forward return in terms of available VIX-derivatives (VIX-

futures and VIX-options). Because of its high volume and vast liquidity, incorporating information

from the VIX derivatives market is essential in constructing a complete picture of the equity

market. In the expression we derive, VIX derivatives play an analogous role for forward returns as

index options play for the expected spot return (see Martin, 2017). All quantities in this expression

are observable in real-time. Thus, we can compute these forward returns in real-time as well. Since

this expression depends on VIX-derivatives, we call it the VIX-approach for forward returns.

We present three applications of the VIX-approach. In the first application, we document a pro-

cyclical term structure of forward returns: upward sloping in good times but downward sloping in

bad times. Several studies have documented the average shape of the term structure of the equity

risk premium, which is the expected spot return of dividend strips across different maturities. For

instance, Binsbergen, Brandt, and Koije (2012) and Binsbergen and Koijen (2017) document that

the equity term structure is downward sloping, on average. Moreover, Gormsen (2021) finds that

2Our approach to modeling the term structure of equity forward returns, Et [Rt+n→t+n+m],m > n > 0, instead of
the sequence of expected spot returns Et [Rt→t+n],n > 0, is conceptually similar to forward rate models compared to
spot rate models in fixed income (see, for instance, Heath, Jarrow, and Morton, 1992; Duffie and Singleton, 1999).
However, there are substantial differences between equity returns and interest rates; and the forward equity return
cannot be derived from the equity spot return. Specifically, spot returns are static, similar to the current yield curve in
the fixed income market. In contrast, the term structure of forward returns provides a dynamic movement of the equity
return, which resembles the movement of the yield curve.

3There has been extensive research about the realized autocorrelation using historical equity index data (see, for
instance, Lo and MacKinlay, 1988, 1990; Fama and French, 1988; Poterba and Summers, 1988; Moskowitz, Ooi, and
Pedersen, 2012). These studies do not use derivatives.

2



the equity term structure is downward sloping in good times, but upward sloping in bad times, and

thus counter-cyclical. We document a new stylized fact about the shape of the term structure of

forward equity returns. The key difference between the previous studies and ours is that, in our

setting, we recover expected future returns on the aggregate market, whereas these previous studies

focus on the spot return of a dividend-strip (Binsbergen, Brandt, and Koije, 2012; Binsbergen and

Koijen, 2017), the futures of the dividend-strip (Bansal, Miller, Song, and Yaron, 2021), or a

short-maturity asset in excess of long-maturity asset (Gormsen, 2021). Moreover, we use VIX-

derivatives, whereas dividend strips, index options, or asset pricing models are used in previous

studies.

In the second application, we use the VIX-approach to compute conditional autocorrelation in

real-time. Predicting the expected market return with past return observations has been a challenge

for researchers and practitioners for decades. Can past returns forecast future returns? Are the

returns of a given stock market index autocorrelated? How can we estimate the unconditional

autocorrelation coefficients of market returns? Despite extensive research about the realized

autocorrelation using historical data (see, for instance, Lo and MacKinlay, 1988, 1990; Fama and

French, 1988; Poterba and Summers, 1988; Moskowitz, Ooi, and Pedersen, 2012), the literature

still offers no clear guidance as findings have varied depending on the horizon studied and on the

sample frequency selected (Campbell, 2017; Baltussen, van Bekkum, and Da, 2019). Moreover,

what remains unclear is how to infer the forward-looking autocorrelation perceived by investors,

as the true autocorrelation may diverge significantly from zero and fluctuate over time (LeRoy,

1973). Empirically, we document significantly negative autocorrelation on the S&P 500 index

from index options and VIX-derivatives. For instance, the conditional autocorrelation between

two consecutive monthly returns, corrt (Rt→t+1mo,Rt+1mo→t+2mo), is on average −20.90% with a

t-stat of −18.10. On average, the market autocorrelation on the S&P 500 index is around −20%

to −40%, suggesting a robust short-term reversal from the perspective of derivatives.

The third application illustrates the economic value of forward returns from derivatives.

Specifically, we construct a reversal signal to trade the market. This signal relies on the real-

time autocorrelation identified from the derivatives market in the second application. We find
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that the reversal signal predicts market downturns well, particularly when the market declines

significantly in the next month. Furthermore, we show that the corresponding market timing

strategy is conservative and delivers higher Sharpe ratios compared to the buy-and-hold benchmark

strategy. Moreover, the economic value of this timing strategy can be substantial during prolonged

market downturns. For example, investors are willing to pay as much as 11% per annum to switch

from the buy-and-hold strategy to the derivative-based market-timing strategy during the 2008/09

global financial crisis, January 2008−June 2009.

The VIX-approach relies on the assumption that θt ≡ corrQ
t (Rt→t+1,R2

t+1→t+2) = 0, which

states that the risk-neutral conditional correlation coefficient between Rt→t+1 and R2
t+1→t+2 is zero.

This risk-neutral zero correlation assumption seems rather technical and restrictive as our objective

is to use available market information alone and avoid using any model assumption about the future

return. Moreover, there are no available derivatives in the market yet to reveal this risk-neutral

correlation coefficient directly. Therefore, we need to (1) justify the VIX-approach empirically for

the equity index and (2) introduce econometric methods to estimate this risk-neutral correlation

coefficient.

For this purpose, we derive an alternative expression for forward returns using another set of

derivatives data - index option prices and their gammas. A disadvantage of this approach is that

it cannot be applied in real-time. Nevertheless, by comparing this expression for forward returns

to those derived using the VIX-approach, we can estimate past values of θt and analyze its time

series properties. In the end, we document that the VIX-approach is reasonably good as the sample

average of θt is fairly close to zero. Moreover, if we use the estimated θt , we derive a more robust

expression of forward return. In the latter expression of forward return, we use all historical and

current index option derivatives (option prices and gammas) and the VIX-derivatives. In this paper,

we refer to this more general approach to estimating forward returns as the VIX-Gamma approach.

We implement the VIX-Gamma approach in the market-timing strategy and demonstrate that

its economic value is even more significant than in the VIX-approach. For instance, we find

that investors are willing to pay 31.153% per annum to switch from the buy-and-hold portfolio
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to the VIX-Gamma-based trading strategy, more than double the amount for the VIX-approach.

Moreover, VIX-Gamma-based trading strategy produces a positive average return and a positive

Sharpe ratio, even during the 2008/09 global financial crisis period.

Our study is related to Martin (2021), which reduces the conditional expected future return to

the no-arbitrage price of a “forward-start option”. Since the forward-start option is traded only in

over-the-counter markets, he obtains quoted prices from a sophisticated investment bank for a small

number of days. In contrast, we present two new expressions of the expected future return that rely

on VIX-derivatives and index options—pricing data for both are publicly available. Notably, in

our second application, the autocorrelation based on the exchange-traded derivatives is comparable

(in magnitude) to that based on the over-the-counter derivatives in Martin (2021). Moreover, we

demonstrate novel implications for the equity term structure, investment trading strategy, and risk-

neutral density. Another related working paper is by Chabi-Yo (2019), who derives lower and upper

bounds, varying from −28% to −3% with a mean value of −14%, on the market autocorrelation

with index option prices. Other studies have documented how contingent claims can be used to

elicit valuable forward-looking information about the market’s expected spot returns (Ross, 2015;

Borovička, Hansen, and Scheinkman, 2016; Schneider and Trojani, 2019; Jensen, Lando, and

Pedersen, 2019; Heston, 2021; Bakshi, Gao, and Xue, 2022). But these authors do not study

forward returns.

The rest of the paper is organized as follows. Section 2 introduces the VIX-approach, followed

by the empirical results and applications in Section 3. We present the VIX-Gamma approach

and its application in Section 4. Section 5 concludes. All technical proofs are presented in the

Appendixes. In addition, in the Internet Appendix of this paper, we offer extensions of the theory

and present additional empirical results.
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2 Theory

For a discrete time subscript t, St denotes the time-t price of the stock index. Rt→t+1 =
St+1
St

is

the gross market return over the time period from t to the next time t +1, and R f ,t→t+1 is the gross

risk-free return over the same time period. We denote the real-world probability measure by P,

and the information set at time t by Ft . Let (Mt) be a pricing kernel process and mt,t+1 =
Mt+1
Mt

be

the stochastic discount factor (SDF) over the period from t to t +1. Consequently, the risk-neutral

probability measure Q satisfies

dQ
dP

|Ft+1= R f ,t→t+1mt,t+1.

For any f (St+1) ∈ Ft+1 with suitable integrability condition, its conditional expectation under

P is given by

EP
t [ f (St+1)] = EQ

t

[
dP
dQ

f (St+1)

]
=

1
R f ,t→t+1

EQ
t

[
f (St+1)

mt,t+1

]
. (1)

Equation (1) states that a conditional expectation of f (St+1) under the real-world probability

measure P is the no-arbitrage time-t price of a contingent claim with payoff f (St+1)
mt,t+1

at time t +1.4

We use the notation EP
t [·] to highlight the fact that those quantities are under the real-world

probability measure. Henceforth, we drop the superscript and use Et [·] to denote conditional

expectation under the P-measure.

Consider a log-utility-based SDF such that,

mt,t+1 =

(
St

St+1

)
.

4Bakshi, Gao, and Xue (2022) refer to this known result as the inverting the Girsanov theorem.
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By Equation (1), we obtain

Et [Rn
t→t+1] =

1
R f ,t→t+1

EQ
t

[(
St+1

St

)n+1
]
, (2)

where the right-hand side of the above equation can be synthesized in terms of time-t prices of

index call options Ct→t+1(K) that expire at t +1. Precisely,

Et [Rn
t→t+1] =

(n+1)n
Sn+1

t

∫
∞

0
Kn−1Ct→t+1(K)dK. (3)

This equation for the expected spot return (and higher moments) in terms of options is well

studied in the literature (see, e.g. Bakshi, Kapadia, and Madan, 2003; Bakshi and Madan, 2000;

Carr and Madan, 1999; Carr, Ellis, and Gupta, 1998; Martin, 2017; Martin and Wagner, 2019). We

next move to the forward return (i.e., conditional expected future return).

2.1 VIX-approach

By Equation (1), the forward return is written as5

Et [Rt+1→t+2] =
1

R f ,t→t+2
EQ

t

[
Rt+1→t+2

mt,t+2

]
. (4)

Rewriting the right-hand side, we obtain

Et [Rt+1→t+2] =
1

R f ,t→t+2
EQ

t

[(
St+2

St+1

)
×
(

St+2

St

)]
=

1
R f ,t→t+2

EQ
t

[
(Rt+1→t+2)

2 ×Rt→t+1

]
,

=
1

R f ,t→t+2

{
EQ

t

[
(Rt+1→t+2)

2
]
×EQ

t [Rt→t+1]+CovQ
t

(
(Rt+1→t+2)

2 ,Rt→t+1

)}
.

5For simplicity we only derive the result for Et [Rt+1→t+2]. The expression of Et [Rt+n→t+n+s] is similar and given
in the Appendix.
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Then,

Et [Rt+1→t+2] =
1

R f ,t+1→t+2
EQ

t [(Rt+1→t+2)
2]+

θt

R f ,t→t+2

√
VarQt (R2

t+1→t+2)

√
VarQt (Rt→t+1),

(5)

where θt ≡ corrQt
(
Rt→t+1,R2

t+1→t+2
)

is the correlation coefficient between the spot return, Rt→t+1,

and the future return square, R2
t+1→t+2, under the risk-neutral probability measure Q. In Eq. (5),

the risk-neutral conditional variance of Rt→t+1 is computed from Eqs. (2) - (3) using index options.

The other two terms are the risk-neutral conditional (upon at time t) moment, EQ
t [(Rt+1→t+2)

2],

and the risk-neutral conditional variance of R2
t+1→t+2, which are discussed in the following result.

Proposition 2.1. Suppose that interest rates are deterministic. For simplicity, let R = Rt+1→t+2,

R f = R f ,t+1→t+2. Let Ft = FV IXt,t+1→t+2 be the futures price of the VIX index, and σt be the

implied volatility of at-the-money options on the VIX index. Then EQ
t [Rn] can be solved recursively

for n = 2,3,4, · · · via the following approximation formulas,

F2
t (1+σ

2
t )∼

(
EQ

t

[(
R
R f

)2
]
−1

)
, (6)

1
2

F2
t
(
1+σ

2
t
)
∼

n

∑
i=1

(−1)i 1
i
EQ

t

[(
R
R f

−1
)i
]
,n ⩾ 3. (7)

Proof. See Appendix A. □

Proposition 2.1 states that all risk-neutral higher moments of Rt+1→t+2 can be computed from

the publicly available VIX index, VIX futures, and VIX options.6 For instance, the risk-neutral

conditional moment of Rt+1→t+2 is given by

EQ
t [(Rt+1→t+2)

2]∼ R2
f ,t+1→t+2

(
1+F2

t (1+σ
2
t )
)
. (8)

This formula can be understood as follows. The CBOE’s VIX index measures the risk-neutral
6Although Proposition 2.1 is given as an approximation, we show that the approximation error is very small for the

empirical application in the Appendix.
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entropy,

V IX2
t→t+1 =

2
T

LQ
t

(
Rt→t+1

R f ,t→t+1

)
, (9)

where LQ
t (X)≡ log

[
EQ

t (X)
]
−EQ

t

[
log(X)

]
. Among all quadratic polynomials, EQ

t [(Rt+1→t+2)
2]

is the best one (up to a constant) to approximate the risk-neutral conditional entropy of Rt+1→t+2,

i,e., the second moment of a future VIX. By the equation, EQ[X2] =EQ[X ]2+VarQ(X), the second

moment of a future VIX (represented by a random variable X) is the sum of a square of a VIX

futures price, EQ[X ], and a conditional risk-neutral variance of a future VIX. Since the latter

can be proxied by the square of the implied volatility of VIX options, we use VIX-derivates to

compute the risk-neutral conditional second moment of a future return. Similarly, by high-degree

polynomial best approximation, we obtain other equations (recursive formula) in Proposition 2.1.

Then we can calculate EQ
t [(Rt+1→t+2)

3],EQ
t [(Rt+1→t+2)

4], and so on. Accordingly, we calculate

VarQ
t (R2

t+1→t+2) using VIX-derivatives.

Remark 2.1. Following Martin (2013), the risk-neutral conditional cumulant-generating function

K(λ ) of the relative future return R
R f

is K(λ ) = log
(
EQ

t

[
eλR/R f

])
. Notice that EQ

t

[
R

R f

]
=

EQ
t

[
EQ

t+T

(
R

R f

)]
= 1, then

K(λ ) = log

(
1+λ +

∞

∑
n=2

1
n!
EQ

t

[(
R
R f

)n]
λ

n

)
.

By Proposition 2.1, the function K(λ ) can be computed from VIX-derivatives.

Now, in computing the forward return in Equation (5), the last ingredient is θt . Theoretically

speaking, θt can be obtained from the risk-neutral bivariate distribution of (Rt→t+1,Rt+1→t+2).

Thus basket or correlation options can be used to recover the value of this parameter.7 Nevertheless,

there are no available real-time basket or correlation options yet in the financial market to derive

the value of θt .
7For this particular case, Martin (2021) reduces it to be a forward-start option valuation. In general, if Ft+T is

generated by S1, · · · ,St+T , then all conditional information at time t should be recovered by the time t value of some
options such as basket options with state variables St+1, · · · ,St+T . The theory is developed in Tian (2014, 2019) by
using the universal approximation theorem from neural networks. Carr and Laurence (2011) also develop a theory in
terms of basket options based on random transformation.
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In this paper, we suggest two methods to estimate the value of θt . The first method

is as follows. While θt is unknown, we know that the risk-neutral correlation coefficient,

corrQt
(
R2

t→t+1,Rt+1→t+2
)
= 0, and in general, corrQt (g(Rt→t+1),Rt+1→t+2) = 0, for any function

g(·). This implies that, to a certain extent, Rt+1→t+2 is independent from Rt→t+1. Therefore,

it is reasonable to expect that θt is close to zero.8 Indeed, in Section 4 below, we introduce an

alternative expression of forward returns in terms of index options and option greeks. As will be

shown in Section 4, we can use historical option data to estimate θt (the second method), and the

averages are fairly close to zero. For these reasons, we first assume that θt = 0; thus, the forward

return is

Et [Rt+1→t+2] =
1

R f ,t+1→t+2
EQ

t [R
2
t+1→t+2]∼ R f ,t+1→t+2

(
1+F2

t (1+σ
2
t )
)
. (10)

Since VIX-derivatives data alone are sufficient to compute the forward return in the last equation,

we call this approach the VIX-approach for estimating the forward return.

Remark 2.2. Similar to Equation (3), in which the conditional moments of spot return can be

implied by index options, we can also express the higher moments of future return with VIX-

derivatives. Precisely, by assuming corrQ
t

(
Rt→t+1,(Rt+1→t+2)

k
)
= 0,k ⩾ 2, we have

Et

[
(Rt+1→t+2)

k
]
=

1
R f ,t+1→t+2

EQ
t

[
(Rt+1→t+2)

k+1
]
. (11)

Thus far, we assume a log-utility-based specification of the pricing kernel process. It can easily

be extended to a power specification for a representative CRRA-type agent with a coefficient of

constant relative risk aversion γ ,

mt,t+1 =

(
St

St+1

)γ

, γ ⩾ 1.

8For instance, if Stein’s lemma holds for the risk-neutral bivariate distribution of (Rt→t+1,Rt+1→t+2), then θt = 0.
In general, however, the bivariate distribution of (X ,Y ) has a rich structure, yielding non zero correlation coefficient
between X and Y 2, but zero-correlation between X2 and Y . We will discuss this issue in Appendix C.
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In the Internet Appendix, we present a general expression of forward returns for a power-

utility based specification of the stochastic discount factor process. We introduce the concept

of power-VIX (PVIX) to express the forward returns and all higher moments of future return in

the VIX-approach. We demonstrate that the effect of the risk-aversion parameter γ is marginal.

Moreover, we show that both the VIX and VIX-Gamma approachs can be applied to a general

class of stochastic discount factor process of the form mt,t+1 = ft(Rt→t+1) with a time-dependent

smooth function ft(x),∀t.

3 Empirical Results and Applications

In this section, we use the theoretical results of Section 2 in three novel applications. We start

with the first application by applying the VIX-approach to derive the term structure of forward

one-month returns. Next, we compute the expected spot return (and higher orders) from index

options. Combined with the moments of future return from VIX-derivatives, we recover the market

autocorrelation on a real-time basis. Finally, we show how the real-time market autocorrelation

can be used to construct a market timing strategy that outperforms the buy and hold benchmark. A

common theme of these applications is that the recovered future return and autocorrelation contain

valuable forward-looking information not captured by historical measures.

3.1 Data

We collect data for S&P 500 index options and VIX options from OptionMetrics, and obtain

VIX index and VIX futures data from the CBOE. On each trading day, we follow Hu and Jacobs

(2020) to use linear interpolation to compute daily VIX futures prices, FVIXt,t+T1→t+T1+T2 , with

constant maturities for T1 = 1, 2, 3, 4, 6, and 9 months.9 Since both VIX index and VIX futures
9CFE may list futures for up to nine near-term serial months, as well as five months on the February quarterly

cycle associated with the March quarterly cycle for options on S&P 500 (Mencia and Sentana, 2013). We thus choose
the maximum constant maturity to be nine months. VIX futures expiration calendar can be found at https://www.
macroption.com/vix-expiration-calendar/.
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measure the forward-looking implied index volatility over 30 days, T2 always represents one

month.

Panels A and B in Table 1 report summary statistics for VIX index and VIX futures prices.

Typically, the VIX futures market is in contango. That is, on average, VIX futures prices are

higher than the VIX index, reflecting the volatility risk premium paid by holders of long volatility

positions. Panel C reports summary statistics for implied volatility of at-the-money VIX call and

put options. After applying standard filters and merging data from different databases, we end up

with a sample of daily observations from February 24, 2006 to December 31, 2019. All results are

annualized.10

3.2 Term structure of forward returns

The expected excess return on the market, or expected equity risk premium, is one of the central

quantities of interest in finance and macroeconomics (Martin, 2017; Rapach and Zhou, 2022). In

this subsection, we study the shapes of the term structure of forward returns and equity forward

risk premiums, as the first application.

To be specific, let

ft,T = Et [Rt+T→t+T+1] ,∀t,∀T = 0,1, · · · , (12)

where ft ≡ ft,0 is the conditional expected spot return Et [Rt→t+1]. The one-period forward

return ft,T forms a term structure of future returns analogous to the term structure of forward

rates: Conditional on the time-t, ft,T = Et [Et+T [Rt+T→t+T+1]] = Et [ ft+T ], which is similar to the

equation that the implied forward rate equals the expected spot rate in the fixed-income market.

However, the relationship between equity spot and forward returns is fundamentally different

than the relationship between bond spot and forward returns. To see this, suppose r̂t→t+n is a

default-free continuously compounded spot interest rate in effect from time t until the future time

t + n.11 In other words, R f ,t→t+n = exp(nr̂t→t+n) = 1/P(t, t + n), where P(t, t + n) is the time t

10We present full details of the procedure and statistics in the Internet Appendix.
11A similar argument also holds for any discrete compounding convention.
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price of a default-free zero coupon bond paying 1 at time t+n. By the (continuously compounded)

yield curve at time t, we mean the mapping n → r̂t→t+n. At time t, the return that will be realized

from holding the zero-coupon bond until maturity at time t+n is known. On the other hand, we can

also construct a term structure of equity spot returns, say, n → Et [Rt→t+n]. However, the realized

return Rt→t+n on the equity index is unknown at time t, as the expected spot return is distinct from

the realized return due to the perpetual nature of equity claims.

Now let f̂t,t+n→t+n+m be the implied (continuously compounded) forward rate, at time t, from

time t +n to t +n+m. The well-known relationship between forward and spot rates,

f̂t,t+n→t+n+m =
(m+n)r̂t→t+n+m −nr̂t→t+n

m
, (13)

is a straightforward consequence of the no-arbitrage principle. However, the forward equity return,

Et [Rt+n→t+n+m], cannot be derived similarly in terms of expected spot returns. In fact, we can

determine the time-t fair rate, K, of a forward contract maturing at time t + n, to exchange the

realized return Rt+n→t+n+m at time t +n+m. By the no-arbitrage asset pricing principle,

K = EQ
t [Rt+n→t+n+m] = EQ

t

[
EQ

t+n[Rt+n→t+n+m]
]
= EQ

t [R f ,t+n→t+n+m]. (14)

Hence, the “implied” forward return on the equity index is the risk-free forward return.

The difference between Et [Rt+n→t+n+m] and EQ
t [Rt+n→t+n+m] is called the time-t conditional

expected forward risk premium. Compared to the equity index’s forward return, the risk-free

return in each short time period is small and relatively stable. Therefore, the term structure of

ft,T is essentially comparable (in shape) to the term structure of expected forward risk premiums,

ft,T − EQ
t [R f ,t+T→t+T+1], which reduces to ft,T − R f ,t+T→t+T+1, provided interest rates are

deterministic. Thus, we obtain the term structure of forward one-period returns and expected

forward risk premiums by the VIX-approach in Equation (10) and Proposition 2.1.

Table 2 reports the summary statistics for the T -forward one-month returns. We choose T to

be 1, 2, 3, 4, 6, and 9 months in ft,T . Panel A considers the full sample period from February
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24, 2006 to December 31, 2019. The term structure of forward one-month equity returns (and

equity risk premiums) is mainly upward-slopping in normal times. On average, the forward one-

month return and expected risk premium increase with respect to maturity T , except for a slightly

downward/flat feature when T = 6 months. We next examine the shape of the term structure

ft,T , for T = 1,2,3,4,6,9, when the market is in bad (good) times. Precisely, we use the NBER

recessions period, January 1, 2008−June 30, 2009 to represent bad times, and the post-NBER

recessions, July 1, 2009−December 31, 2019, to represent good times. As shown in Panel B of

Table 2, the term structure of forward one-month returns (and equity forward risk premiums) is

downward sloping on average in bad times. In contrast, Panel C reveals an upward-sloping term

structure of one-month future returns (and expected risk premiums), on average, in good times.

Collectively, Figure 1 illustrates the term structure of future one-month returns on average, in

“good”, “bad”, or “overall” times, respectively. The slope of the term structure is pro-cyclical.

Furthermore, Figure 2 displays the term structure of future one-month returns for all time t during

the NBER recessions. More specifically, we divide the sample period into four shorter ones:

January 2008−October 2008; November 2008−January 2009; February 2009−April 2009; and

May 2009−June 2009. We observe that the downward-sloping term structure is significantly steep

between October 2008 and April 2009 (the most severe period of the 2008/09 global financial

crisis). By contrast, Figure 3 shows an upward-sloping term structure of forward one-month returns

(expected risk premiums) most of the time between 2009 and 2019.

It is interesting to compare our results on the equity forward term structure with recent studies

of the equity term structure in the literature (see, for instance, Binsbergen, Brandt, and Koije, 2012;

Binsbergen and Koijen, 2017; Gormsen, 2021). By a term structure of equity risk premia, these

previous studies refer to the relationship between a one-period spot return premia of maturing asset

with the maturity.12 Specifically, a zero-coupon equity or dividend strip is a claim with only one

dividend payment at a future time, analogous to a zero-coupon bond. Let Pn,t be the price at time

t of a claim (dividend strip) to the dividend at time t +n. Then, the time-t price of the underlying

12In Chabi-Yo and Loudis (2020), a term structure is a lower bound of hold-to-maturity expected spot returns at
various horizons. The authors show that the term structure of the (lower bound) of spot returns is downward-sloping
during turbulent times but upward-sloping during normal times.
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index is St = ∑
∞
n=1 Pn,t . Let Rn,t be the one-period spot return of the dividend strip maturing t +n

from period t to t +1. That is,

Rn,t+1 =
Pn−1,t+1

Pn,t
. (15)

The spot return of the underlying index is

Rt→t+1 =
∞

∑
n=1

ωn,tRn,t+1,ωn,t =
Pn,t

St
. (16)

Then, the term structure of the dividend return, n → Rn,t+1, illuminates the contribution of the

dividend return Rn,t+1 to the spot return Rt→t+1. 13 For example, an upward-sloping term structure

of the dividend return shows a higher contribution of the dividend strip maturing t + n to the

underlying aggregate market index return Rt→t+1 when the maturity n is higher, and vice versa.

In contrast, we focus on the term structure of the aggregate equity market’s forward returns, T →

Rt+T→t+T+1, a relationship between T and the forward return starting from period t +T to t +T +

1.

In this regard, we document a new stylized fact that the term structures of forward one-period

returns and expected forward risk premiums implied by derivatives markets are pro-cyclical. The

pro-cyclicality can be explained as follows. By Proposition 2.1, the conditional expected future

one-month returns in T months are essentially determined by the futures prices of VIX over the

same period. Therefore, a pro-cyclical term structure of equity risk premia is consistent with Hu

and Jacobs (2020) which documents that VIX futures prices tend to have an upward sloping term

structure during normal times and tend to become inverted or hump-shaped in times of market

turbulence.
13Gormsen (2021); Bansal, Miller, Song, and Yaron (2021) study the term structure of the dividend future return, or

θ n,m = Et [Rn,t −Em,t ] for long maturity n and short maturity m < n. Similarly, Binsbergen, Brandt, and Koije (2012);
Binsbergen and Koijen (2017) consider the difference between short-term assets with all dividend payments until T ,
say three years, and long-term assets with all remaining future dividends.
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3.3 Market autocorrelation

Building on the theoretical results of Section 2, we turn now to the question of predicting the

expected market return with past return observations. Specifically, we are interested in computing

the conditional market autocorrelation, corrt (Rt→t+1,Rt+1→t+2), under the real-world probability

measure. This conditional market autocorrelation reveals how two future returns change from the

perspective of time t in two consecutive periods. Our goal is to compute these conditional market

autocorrelations from derivatives data.

For this purpose, we compute

Covt (Rt→t+T ,Rt+T→t+T+1) = Et [Rt→t+T+1]−Et [Rt→t+T ]×Et [Rt+T→t+T+1] . (17)

By Equations (3) and (10), the expected spot return can be recovered from equity index

option prices, and the expected future return can be obtained from the VIX-derivatives. Simi-

larly, we can estimate Vart(Rt→t+T ),Vart(Rt+T→t+T+1), and then the autocorrelation coefficient

corrt (Rt→t+1,Rt+1→t+2), under the real-world probability measure.

Table 3 (Panel A) reports the market autocorrelation on the S&P 500 index. We use the average

value between the implied volatility of at-the-money put and call VIX options as a proxy for σt .

Following the VIX futures structure, we consider T1 to be 1, 2, 3, 4, 6 and 9 months, and T2 to

be fixed for 1 month. Across columns, we observe significantly negative coefficients, suggesting

a persistent short-term reversal. For instance, when T1 is 1 month, corrt(Rt→t+1mo,Rt+1mo→t+2mo)

is on average −20.90% with a t-stat of 18.10. On average, the market autocorrelation on S&P 500

index is around −20% to −40%. Notably, the numbers in Table 3 are comparable to Chabi-

Yo (2019) and Martin (2021). Using index options data, Chabi-Yo (2019) estimates that the

upper bounds of autocorrelation vary from −28% to −3%; with price quotes of forward-start

options from a major investment bank, Martin (2021) estimates that the autocorrelation of the

S&P 500 index is between −20% and −40% for a small number of days. Table 3 suggests that

our no-arbitrage framework, in Proposition 2.1, is consistent with the pricing of over-the-counter
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derivatives in the market.

Figure 4 displays the time-series of corrt(Rt→t+1mo,Rt+1mo→t+2mo). It is well known that

the month-month autocorrelation coefficient from the historical data is close to zero ((Lo and

MacKinlay, 1988, 1990), and Table 3, Panel B). From the perspective of the derivatives market,

however, the autocorrelation coefficients can be either negative or positive, though they are negative

most of the time.

As a comparison, we also compute the month-to-month autocorrelation between two consec-

utive calendar months using historical stock return, including January/February, February/March,

· · ·, and December/January. Figure 5 plots the consecutive month-to-month autocorrelation over

various periods with the data prior to January 1927 obtained from Robert Shiller’s website. In

contrast to virtually zero month-month autocorrelation coefficient in (Lo and MacKinlay, 1988,

1990), the autocorrelation between two consecutive months can be significantly nonzero. It can be

either positive or negative, depending on the sample of the data. For example, the autocorrelation

of March/April is around 10% over 1871-2019, but −20% over a recent time period 1990-2019.

We next compute the consecutive month-to-month autocorrelation from the derivative market

as explained in Section 2. For consistency, we restrict the sample period to 2006−2019, calculate

corrt(Rt→t+1mo,Rt+1mo→t+2mo) on the first day of each month and take the simple average within

each of the 12 calendar months of the year. For example, for March/April, we compute the

correlation coefficient with VIX-derivatives data on March 1 in each year and then take a simple

average. Our results are displayed in Figure 6, in which the solid red line displays the month-

to-month autocorrelations from the derivative market. By contrast, the blue dot line represents

the month-month autocorrelation from the historical stock return (as in Figure 5). Both methods

yield a similar pattern of consecutive month-month autocorrelation, but the derivative approach

results more negatively in magnitude. In fact, we demonstrate negative autocorrelation between

any two consecutive months from the derivatives market. As an illustration, both yield similar

autocorrelation coefficients of −35% between February and March, and −10% between December

and January. Between May and June, the derivative approach implies an autocorrelation as large
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as −40%, while the historical returns suggest a value of −20%. Moreover, the monthly return

displays a stronger reversal in specific periods than others (for instance, from February to March,

May to June, July to August, and December to January) by both approaches. In summary, the

derivative market reveals a robust short-term reversal in the stock market from a forward-looking

perspective.

Finally, using the VIX approach, we can derive the conditional correlation coefficient between

two spot returns. For instance, in the following conditional correlation between Rt→t+1 and Rt→t+2,

corrt(Rt→t+1,Rt→t+2) =
Et [Rt→t+1Rt→t+2]−Et [Rt→t+1]Et [Rt→t+2]√

Vart(Rt→t+1)
√

Vart(Rt→t+2)
, (18)

every term except Et [Rt→t+1Rt→t+2] is obtained from index options. Similar to Equation (5), we

have

Et [Rt→t+1Rt→t+2] =
1

R f ,t→t+2
EQ

t

[
(Rt+1→t+2)

2 × (Rt→t+1)
3
]
,

=
1

R f ,t→t+2

{
EQ

t

[
(Rt+1→t+2)

2
]
×EQ

t

[
(Rt→t+1)

3
]
+CovQ

t

(
(Rt+1→t+2)

2 ,(Rt→t+1)
3
)}

∼ 1
R f ,t→t+2

EQ
t

[
(Rt+1→t+2)

2
]
×EQ

t

[
(Rt→t+1)

3
]
,

assuming corrQ
t

(
(Rt+1→t+2)

2 ,(Rt→t+1)
3
)
= 0.14 Proposition 2.1 and Equation (3) can be used to

derive Et [Rt→t+1Rt→t+2] with index options and VIX derivatives.

Panels C and D in Table 3 report this new correlation coefficient calculated using either

derivatives or historical stock returns. As shown, using historical data, the autocorrelation between

two spot returns is significantly positive. For example, on average, the correlation coefficient

between the one-month spot return and the two-month spot return is 0.746. However, based

on derivatives market information, the one-month spot return and two-month spot return are

more significantly positively correlated (0.83). Furthermore, the market autocorrelation between

14By a similar method in Section 4, we can also justify this assumption empirically. Without the VIX approach, we
need prices of some generalized forward-start options or spread options which are at present traded only in over-the-
counter markets.
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two spot returns, for T1 = 1,2,3,4,6,9 months, using derivatives market information is more

significant than the correlation coefficients derived from the historical stock returns data. Given the

robust short-term reversal from the derivatives (Panel A), we document that the derivatives market

information reveals a very substantial and higher correlated movement between two spot returns.

3.4 Market timing

To demonstrate the investment value of the VIX-approach, we next propose a market timing

strategy as the third application. We start by constructing a reversal trading signal based on the

forward-looking autocorrelation from the derivatives. We then discuss several evaluation criteria

and report the out-of-sample performance of the marketing timing strategy.

3.4.1 A reversal trading signal

Motivated by the short-term reversal documented in Table 3, we construct a reversal signal

based on both realized cumulative excess returns and the conditional derivative-based autocorrela-

tion. Specifically, we define the reversal signal at time t as,

S̃t,K [rt−K→t ,corrt−K(rt−K→t ,rt→t+1)]=


1, if rt−K→t > 0 & corrt−K(rt−K→t ,rt→t+1)> 0,

1, if rt−K→t < 0 & corrt−K(rt−K→t ,rt→t+1)< 0,

0, otherwise,
(19)

where rt−K→t = Rt−K→t − R f ,t−K→t is the realized cumulative excess return over the past K

months, corrt−K(rt−K→t ,rt→t+1) is calculated from the derivatives, and K = 1, 2, 3, 4, 6, and

9 months. In total, we have six market reversal signals at time t.15

Following the market reversal signal in 19, we trade the market by implementing a zero-cost

strategy at the beginning of the subsequent month. As an illustration, if we use the one-month

15Notice that computing the autocovariance is sufficient in constructing the reversal signal. We do not necessarily
need the autocorrelation in this case.
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reversal signal as a trading signal at time t and implement the corresponding market timing strategy,

the realized return in the subsequent month is

η
[
S̃t,1
]
=


rt→t+1, if S̃t,1 = 1,

0, otherwise.
(20)

We call the strategy based on the 1-month reversal signal the single timing strategy. It is also

possible to use all six reversal signals together, which we call combination timing strategy. For

instance, employing the combination strategy would entail being long the market if ∑K S̃t,K is

greater than some threshold, ξ , an integer ranging from 2 to 5. Following the combination timing

strategy, the realized return in the next month is

η
[
S̃t,K,∀K;ξ

]
=


rt→t+1, if ∑K S̃t,K ⩾ ξ ,

0, otherwise.
(21)

In other words, we should be long the market if and only if at least ξ reversal signals defined in

Equation (19) indicate long signals.

3.4.2 Performance evaluation

To evaluate the market timing strategy’s performance, we compute four performance measures

based on the mean µ̂ j and standard deviation σ̂ j of the out-of-sample realized returns of strategy j.

First, we measure the out-of-sample Sharpe ratio (SRatio) and the certainty-equivalent return

(CEQ) of each strategy,

ŝ j =
µ̂ j

σ̂ j
(22)

and

ˆCEQ j = µ̂ j −
γ

2
σ̂

2
j , (23)

where γ is chosen to be 1, consistent with the log-utility specification of the stochastic discount
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factor in Section 2. To test whether the Sharpe ratios of two strategies are statistically

distinguishable, we follow DeMiguel, Garlappi, and Uppal (2009) to compute the p-value of

the difference. We use the approach suggested by Jobson and Korkie (1981) after making the

correction pointed out in Memmel (2003). A similar test can be applied to the CEQ difference.16

Next, we compute DeMiguel, Garlappi, and Uppal’s (2009) return-loss with respect to a

benchmark. We choose the buy and hold strategy as the benchmark as in Gao, Han, Li, and Zhou

(2018). Precisely, if {µ̂b, σ̂b} are the monthly out-of-sample mean and volatility of the excess

returns from the buy-and-hold strategy, the return-loss from strategy j is

return-loss j =

(
µ̂b

σ̂b

)
× σ̂ j − µ̂ j. (24)

In other words, the return-loss is the additional return required in order for the performance of

strategy j to be consistent with the performance of the benchmark. A negative value indicates that

strategy j outperforms the benchmark as measured by the Sharpe ratio.

Lastly, we calculate the performance fee suggested in Fleming, Kirby, and Ostdiek (2001),

defined as the maximum fee that a quadratic-utility investor would be willing to pay to switch

from the benchmark to the timing strategy. This fee is estimated as the value of ∆ that solves

∑
t

[(
R j,t −∆

)
− γ

2(1+ γ)

(
R j,t −∆

)2
]
= ∑

t

[
Rb,t −

γ

2(1+ γ)
R2

b,t

]
, (25)

where R j,t and Rb,t denote the out-of-sample realized returns for timing strategy j and the

benchmark, respectively. We report the estimates of ∆ in units of basis points per annum.

3.4.3 Out-of-sample performance

Panel A of Table 4 reports the performance measured on (annualized) returns generated from

the market timing strategies over the full sample period. The market timing strategy delivers good

16DeMiguel, Garlappi, and Uppal (2009), on pages 1928–1929, provide a detailed description of how to construct
p-values foe differences in Sharpe ratios.
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realized returns, but does not necessarily lead to the highest realized return on average. The average

realized return is about 4.433% per annum by the single timing strategy, whereas the average return

from buy and hold is about 5.489%. This is reasonable given the market’s upward trend from

2006 to 2019, regardless of the financial crisis around 2008 or a market downturn in 2018. More

important questions to ask are: (i) whether the market timing strategy delivers a higher Sharpe

ratio; and (ii) whether it “predicts” bad market times.

For the first question, all timing strategies produce minor standard deviations than the

benchmark, suggesting that the market timing strategy is more conservative than the benchmark.

For instance, the standard deviation is 9.616% per annum for the single timing strategy; but

14.789% for buy and hold, which is almost twice large. As a result, the single timing strategy

produces a Sharpe ratio of 0.461, whereas the buy and hold only achieves 0.371. We also see that

the last combination timing strategy delivers a higher Sharpe ratio of 0.467.

For the second question, we evaluate the out-of-sample performance during the NBER

recessions in Panel B of Table 4. Not surprisingly, the buy and hold strategy suffers a dramatic loss,

yielding a negative average return of −32.304% per annum, along with a standard deviation as high

as 25.565%, during January 2008−June 2009. Consequently, the Sharpe ratio of the benchmark

is around −1.264. In contrast, the single timing strategy, η
[
S̃t,1
]
, achieves an average return

of −7.027% per annum, along with a much smaller standard deviation of 14.420%. Although the

Sharpe ratio from the single timing strategy is also negative, around −0.487, it exhibits a significant

economic value relative to the benchmark, as suggested by the return-loss and the performance fee.

The −11.194% return-loss value of the single timing strategy suggests that investors are willing

to pay as high as 11% per annum to switch from the buy and hold to the market timing strategy.

Likewise, the quadratic-utility investor would be willing to pay an estimated 2630 basis points

annually to switch from the benchmark portfolio to the single timing strategy. Remarkably and

consistently, during the market crisis, all single and combination timing strategies yield higher

average returns, smaller standard deviations, higher Sharpe ratios, larger CEQs, negative return-

loss measures, and positive performance fees than the buy and hold strategy.
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Furthermore, we plot the realized returns generated from the single market timing strategy and

the buy and hold strategy during the NBER recessions from January 2008 to June 2009 in Figure

7. This recession period overlaps the 2008/09 global financial crisis. We observe that the market

timing strategy based on a one-month reversal signal avoids significant market crashes in January,

June, September, October of 2008, and January of 2009. To summarize, we show that the robust

short-term reversal identified by the derivative market does reveal valuable information on future

market downturns, and the associated economic value can be substantial.

4 VIX-Gamma approach

So far, we have assumed that θt = corrQt
(
Rt→t+1,R2

t+1→t+2
)
= 0. One appealing feature of the

VIX-approach is that it provides an effective way to compute forward return in real-time. However,

we need to justify this assumption for the equity index, as this zero risk-neutral correlation

coefficient assumption fails for a general risk-neutral bivariate distribution in a no-arbitrage pricing

model.17 Consequently, we turn our attention now to the problem of estimation and prediction of

θt using available derivatives data.

In this section, we first provide an alternative expression of forward return in terms of option

prices and gammas. Although this formula cannot be used in real-time to compute forward return

(see explanations below), we can combine this expression and Equation (5) to construct a predictor

for the parameter θt using available historical index options and VIX-derivatives. Then, we use

this estimation of θt at time t to compute the forward return. We call this methodology, the VIX-

Gamma approach, and apply the VIX-Gamma approach to the market timing strategy on a real-

time basis.
17We provide a simple example in Appendix C to illustrate that the risk-neutral correlation coefficient can be any

nonzero number between -1 and 1 in a simple two-period no-arbitrage asset pricing model.
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4.1 Forward return from index option market

In this subsection, we provide an alternative expression of forward return from the options

market.

Proposition 4.1. Suppose that interest rates are deterministic. Then,

Et [Rt+1→t+2] = 2St

∫
∞

0

C
′′
t (St ,L)

L3


∫

∞

0
Ct+1(L,K)dK︸ ︷︷ ︸

inside-integral, It+1(L), known at t

 dL, (26)

where

• St = underlying index price observed at time t;

• C
′′
t (S,L) = the call option gamma at time t with the underlying St and strike price L;

• Ct+1(L,K) = the call option price at time t +1 with the underlying L and strike price K.

Proof. See Appendix B □

Compared with Eq. (10) for the equity index, Equation (26) presents an alternative formula

of forward return for a general underlying variable Rt . Specifically, to compute a forward return

at time t, there are two sets of option data required in Equation (26) in addition to the asset price

St . First, the call option gamma, C
′′
t (S,L), with the underlying St , strike price L, and maturity

t + 1, is needed. The option gamma is available in real-time. Second, the time t + 1 price of call

option price with time to maturity t +2, when the underlying price is L at time t +1, from time t

perspective. Notice that this price Ct+1(L,K) is known at time t, but it is not real-time, since the

underlying index only achieves one particular number at time t +1. Therefore, we need to explain

why the option gamma and Ct+1(L,K) are involved in this equation (the details are given in the

Appendix).

First of all, the number Ct+1(L,K) involved in Equation (26) is well-defined at time t. As a

simple illustrative example, the Black Scholes option formula, assuming the underlying asset has
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a normal distribution with a constant volatility parameter σ , presents a known option price at a

future time as follows:

Ct+1(L,K) = LN(d1)−
K

R f ,t+1→t+2
N(d1 −σ

√
∆t),d1 =

log(L/K)+(rt +
1
2σ2)∆t

σ
√

∆t
.

When we write Ct+1(St+1,K) at time t, the reason we do not know the option price precisely is that

we do not know the realized value St+1. However, the no-arbitrage asset pricing theory guarantees

the relationship between Ct+1(St+1,K) and St+1. In particular, when St+1 achieves a number L, the

price Ct+1(L,K) is known. This argument holds in general, regardless of the distribution of St+1.

The reason is simple. Given the specification of the stochastic discount factor, we know at time t a

precise relationship between the underling index price St+1 and the option price Ct+1(St+1,K) for

any conditional distribution of St+1. Hence, Ct+1(L,K) is well-defined at time t.

Second, even though Ct+1(L,K) is known at time t, its expression could be complicated. Under

the power-specification of the stochastic discount factor, we obtain

Et [Rt+1→t+2] =
2

R f ,t→t+1St

∫
∞

0
EQ

t

[
Ct+1(St+1,K)

St+1

]
dK, (27)

which resembles a similar insight in Equation (3) for a future return (a proof is given in the

Appendix). If the specification of the stochastic discount factor contains a volatility component,

as discussed in Bakshi, Crosby, Gao, and Zhou (2021); Babaoğlu, Christoffersen, Heston, and

Jacobs (2018); Christoffersen, Heston, and Jacobs (2013), the above expression of the forward

return would be different, since Ct+1(L,K) would also depend on the volatility at time t. But, such

a specification involving a volatility component is beyond the scope of the present paper.18

Third, why do we need option gammas in Equation (26) for a future return, whereas only option

prices are required to compute expected spot return Et [Rt→t+1] in Equation (3)? This difference

seems substantial since Rt+1→t+2 is just the index return in a future time period [t + 1, t + 2]. We

18As shown in the Online Appendix, a general class of path-independent specification of the stochastic discount
factor also implies the forward returns with the derivatives using the same approach. In this paper, we focus on a
power-specification of the stochastic discount factor to derive the forward returns from derivatives and document its
asset pricing implications.
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notice that the term inside the integral is time t price (ignoring the interest rate) of a future payoff
Ct+1(St+1,K)

St+1
at time t+1; thus, it is essentially a forward-start option price with payoff max(St+2−K,0)

St+1

at time t +2. We write Π(L|St) be the conditional distribution of St+1. Namely,

Π(L|St) =
∫ L

0
q(z|St)dz

where q(z|St) is the conditional density function under the risk-neutral probability measure. It is

known in the options literature that

dΠ(L|St) = R f ,t→t+1
∂ 2Ct(St ,L)

∂L2 dL

Therefore, we can represent the forward-start option at time t as

EQ
t

[
Ct+1(St+1,K)

St+1

]
=
∫

∞

0

Ct+1(L,K)

L
R f ,t→t+1

∂ 2Ct(St ,L)
∂L2 dL.

Finally, Equation (26) follows from the following relationship between option gamma and strike-

gamma as follows.

L2 ∂ 2Ct(St ,L)
∂L2 = S2

t
∂ 2Ct(St ,L)

∂S2
t

,

in which we can use the option gamma to replace the strike gamma up to a constant.

Remark 4.1. Similarly, we can derive Et
[
Rk

t+1→t+2
]
,k ⩾ 2 as follows.

Et

[
Rk

t+1→t+2

]
= (k+1)kSt

∫
∞

0

C
′′
t (St ,L)
Lk+2

∫ ∞

0
Kk−1Ct+1(L,K)dK︸ ︷︷ ︸

 dL. (28)

Therefore, we can obtain the conditional distribution of a future return Rt+1→t+2 in terms of index

option prices and index gamma.

It is worth mentioning that Proposition 4.1 cannot be used directly since Ct+1(L,K) cannot be
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calculated precisely, at time t, since we do not specify the conditional distribution of St+1. For this

reason, there is no way to find such data at time t to derive the forward return in real-time. This

limitation of Proposition 4.1 prevents us from deriving the forward return from the option market,

compared with the real-time VIX-approach. In the next section, we explain how to combine both

Proposition 4.1 and Eq. (10) to introduce an improved VIX-Gamma approach for the forward

return.

4.2 VIX-Gamma approach

Suppose our objective is to estimate the number θt at time t. One procedure is as follows.

First, at time t − 1, we calculate all risk-neutral return quantities on the right-hand side of

Equation (5) by Proposition 2.1, except for θt−1. Second, assuming the index price St is realized at

time t. By the homogeneous property of the option price, Ct(L,K) =Ct(St ,StK/L) L
St

, we are able

to calculate Ct(L,K) at time t for any L. Therefore, at time t − 1, we compute the left-hand side,

Et−1[Rt→t+1], of Equation (5) directly by Proposition 4.1. By equating the left-hand and right-hand

sides calculations, we calculate the value of θt−1. Figure 8 provides a visual illustration on how to

understand Equation (26). Finally, at time t, we compute the forward return by,

Et [Rt+1→t+2] =
1

R f ,t+1→t+2
EQ

t [Rt+1→t+2]+
θ̂t

R f ,t→t+2

√
VarQ

t (Rt→t+1)

√
VarQ

t (R2
t+1→t+2), (29)

where θ̂t = θt−1,

In the above procedure, we use the risk-neutral correlation coefficient θt−1 as a predictor of

θt . The reason is straightforward. From an econometrics perspective, we can investigate the time-

series property of θs,s < t, at time t. Then, we can use statistics of this time-series {θs,s < t}

to predict θt by an econometrics study. For example, if this time series is stationary, θt−1 is a

good indicator of θt . More generally, if this time series is ergodic, the sample average of θs,s < t

is a good indicator of θt . A VIX-Gamma approach is to use a predictor θ̂t from the statistics of

time-series of all past θ ’s in Equation (29).
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Table 5 reports some statistics of the time series of θt that is calculated with available derivative

data. We find out the sample average of θt is relatively stable across different periods and close

to zero. For instance, the average value of θt in different periods varies between -0.092 to 0.049

except for the calendar year 2010−2011. Moreover, the moving average of θt from 6 months to

5 years belongs to [-0.046, 0.013]. And for the entire period, the moving average of θt is about

-0.06. Therefore, we have justified the VIX-approach by assuming a zero value of θt for the equity

index.

The difference between the VIX-Gamma approach, Equations (29), and the VIX-approach is a

non-zero predictor θ̂t , which relies on all index (prices and gammas) up to (and include) time t, and

VIX derivatives data prior to time t. In the end, we make use of all available VIX derivative data.

all option price and option gamma data until to time t, to calculate the forward return Et [Rt+1→t+2].

Since the VIX-Gamma approach relies on all historical and current derivatives data, it provides a

forward-backward perspective of future returns. In contrast, the VIX approach is forward-looking

because current VX-derivatives data are required.

4.3 Market timing by VIX-Gamma

In this subsection, we implement the same market timing strategy with the VIX-Gamma

approach. Same as before, we compute the market autocovariance (autocorrelation) on the market

and construct the market timing strategy. For brevity, we simply choose the single timing strategy

where we rely on the 1-month reversal signal only. We use the θt that are predicted recursively as

explained in the last subsection.

Table 5 reports several key out-of-sample performance measures of VIX-Gamma approach

and the buy and hold benchmark. Same as in Table 4, we consider both full sample period and the

NBER recession subperiod during January 2008−June 2009. We observe that, in the full sample,

the VIX-Gamma approach outperforms the buy and hold with a higher average return, smaller

standard deviation. Remarkably, the Sharpe ratio increases by 35%, from 0.371 by buy and hold to

0.500 by VIX-Gamma. Moreover, the Sharpe ratio difference of 0.129 is statistically significant.
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Likewise, the CEQ difference is also significantly positive at the 5% level. The negative return-loss

and positive performance fee both suggest that the market timing strategy improves significantly

by considering much more options data in VIX-Gamma approach.

A more striking result is given in Panel B of Table 5, during the NBER recessions period.

In comparison to the negative mean returns and Sharpe ratios from buy and hold strategy, and

those from the VIX-approach based timing strategy in Panel B of Table 4, here we observe a

positive average return, a positive Sharpe ratio, and a positive CEQ. Compared with the return-loss

of −11.194% and the performance fee of 2,630 basis points for the VIX-approach based single

timing strategy in Panel B of Table 4, the two quantities jump to −31.153% and 3,948 basis points,

separately, once we switch to the VIX-Gamma approach. On the whole, those results highlight the

improved forecasting gains associated with the VIX-Gamma approach, and justify the investment

value of studying the conditional expected returns from the derivatives.

The difference between our market timing strategy and the benchmark strategy is that we long

the market only when the signal shows a positive market excess return in the following month. In

contrast, the benchmark strategy is long the market persistently. In other words, our market timing

strategy is to stay away from the stock market if the signal from the derivative market suggests a

future market downturn. Therefore, the relative performance of the market timing strategy mainly

depends on whether the reversal signal identified indeed reveals valuable information about the

market return in the following month.

As shown in Figure 9, the reversal signal from the VIX-Gamma approach more accurately

predicts the market downturn than the VIX-approach in Figure 7. Remarkably, we find that the

trading signals from the VIX-Gamma approach successfully predicted all market crashes during

the 2008/09 global financial crisis, except for the most severe one in October 2008. Remarkably, it

also captures the upside potentials, for instance, in April and May of 2009, which seems missing

in the VIX-approach.

Finally, we plot the realized returns during in full sample period in Figure 10. To highlight the

predictive power of the timing strategy, we shadow the area below zero. The reversal signal from
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VIX-Gamma does seem to predict the market downturn, particularly when the market crashed in

2008−2009, 2014, 2015, and 2018−2019.

5 Conclusion

In this paper, we express the equity index’s forward return by market available derivatives

data–index option prices and gammas, VIX-futures, and VIX-option prices. Since this expression

depends on all historical derivative and current derivative data, this expression yields a term

structure of forward returns from a forward-backward perspective without relying on any model

assumption about the equity index.

We present three applications of this expression of forward return from derivatives, including

the pro-cyclic term structure of forward returns, robust autocorrelation analysis and short-term

reversal pattern, and a profitable dynamic market-timing strategy. The forward return reveals future

market drawdowns and captures upward market movements, yielding substantial economic value.

Overall, we demonstrate the significance of derivatives market information in estimating expected

returns in the future (Miller, 1999, page 100).
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Appendix

Appendix A Proof of Proposition 2.1

The proof is divided into several steps.

Step 1. We first derive an approximation formula of VIX as follows

V IX2
t→t+T ∼ 1

T

(
EQ

t

[(
Rt→t+T

R f ,t→t+T

)2
]
−1

)
. (A1)

By using the second-order expansion of log(1+ x) ∼ x− 1
2x2 when x closes to zero, and Rt→t+T

R f ,t→t+T

sufficiently closes to one, we obtain

log
(

Rt→t+T

R f ,t→t+T

)
∼ Rt→t+T

R f ,t→t+T
−1− 1

2

(
Rt→t+T

R f ,t→t+T
−1
)2

. (A2)

By taking the conditional expectation under the risk-neutral probability measure Q, and using the

relation that EQ
t

[
Rt→t+T

R f ,t→t+T

]
= 1, we obtain

EQ
t log

(
Rt→t+T

R f ,t→t+T

)
∼ 1

2
− 1

2
EQ

t

[(
Rt→t+T

R f ,t→t+T

)2
]
. (A3)

Recall the definition of VIX as a risk-neutral entropy

V IX2
t→t+T =

2
T

LQ
t

(
Rt→t+T

R f ,t→t+T

)
(A4)

where LQ
t (X)≡ logEQ

t X −EQ
t logX . By Equation (A3), we obtain

V IX2
t→t+T ∼ 1

T

(
EQ

t

[(
Rt→t+T

R f ,t→t+T

)2
]
−1

)
, (A5)

since logEQ
t

[
Rt→t+T

R f ,t→t+T

]
= 0.
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Step 2. We derive the result for EQ
t [Rn] when n = 2. We use the formula (A1) for the time

period from t +T1 to t +T1 +T2,

V IX2
t+T1→t+T1+T2

∼ 1
T2

(
EQ

t+T1

[(
R
R f

)2
]
−1

)
.

Here, to simplify notation, we write R = Rt+T1→t+T1+T2 ,R f = R f ,t+T1→t+T1+T2 .

By applying the conditional expectation of the last equation at time t under the Q-measure , we

have

EQ
t [V IX2

t+T1→t+T1+T2
]∼ 1

T2

(
EQ

t

[(
R
R f

)2
]
−1

)
, (A6)

where the left-hand side can be expressed as

EQ
t [V IX2

t+T1→t+T1+T2
] =

EQ
t [V IXt+T1→t+T1+T2]︸ ︷︷ ︸

FV IXt,t+T1→t+T1+T2


2

+VarQt (V IXt+T1→t+T1+T2).

Here, the first term on the right-hand side of the last equation is the square of the VIX

future by the risk-neutral pricing formula, and the second term is the conditional variance

VarQt (V IXt+T1→t+T1+T2).

We now consider the VIX option with maturity t +T1 and the underlying is V IXt+T1→t+T1+T2 .

Since the VIX is a tradable asset, by the fundamental pricing theorem in derivative theory,

its future value process under the Q-measure is a martingale. Then, the conditional variance

VarQt (V IXt+T1→t+T1+T2) equals
(

FV IX2
t,t+T1→t+T1+T2

)
σ2

t T1, where σt is the implied volatility of

the at-the-money VIX option. Therefore,

EQ
t [V IX2

t+T1→t+T1+T2
] = FV IX2

t,t+T1→t+T1+T2
(1+σ

2
t T1). (A7)

Plug back into Equation (A6) and we obtain

F2
t (1+σ

2
t T1)∼

1
T2

(
EQ

t

[(
R
R f

)2
]
−1

)
, (A8)

32



where Ft = FV IXt,t+T1→t+T1+T2 denotes the futures prices on VIX index.

Step 3. We derive the result for EQ
t [Rn] for n⩾ 3. By the n-th order approximation of log(1+x),

we have

log(1+ x)∼
n

∑
i=1

(−1)i−1 1
i
xi.

For x = R
R f

−1, we obtain

log
(

R
R f

)
∼

n

∑
i=1

(−1)i−1 1
i

(
R
R f

−1
)i

.

By using the same method in Step 2, we have

EQ
t+T1

[
log(

R
R f

)

]
∼

n

∑
i=1

(−1)i−1 1
i
EQ

t+T1

[(
R
R f

−1
)i
]
.

Since

V IX2
t+T1→t+T1+T2

=− 2
T2
EQ

t+T1

[
log(

R
R f

)

]
∼ 2

T2

n

∑
i=1

(−1)i 1
i
EQ

t+T1

[(
R
R f

−1
)i
]
,

By taking expectation conditional on t, the iterated law of expectation implies

Et [V IX2
t+T1→t+T1+T2

]∼ 2
T2

n

∑
i=1

(−1)i 1
i
EQ

t

[(
R
R f

−1
)i
]
,

and we obtain,

T2

2
F2

t
(
1+σ

2T1
)
∼

n

∑
i=1

(−1)i 1
i
EQ

t

[(
R
R f

−1
)i
]
, n ⩾ 3. (A9)

□

Approximation error: We next explain why this approximation is sufficiently tight for

empirical applications. For simplicity, we use x = Rt,t→t+T
R f t,t→t+T

−1. Let a ≡ supx|log(1+x)− (x− x2

2 )|
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for all possible scenarios of x. The number a is very small in magnitude because x is closes to zero.

Moreover, for any c > 0,

EQ
[∣∣∣∣log(1+ x)− (x− x2

2
)

∣∣∣∣] = EQ
[∣∣∣∣log(1+ x)− (x− x2

2
)

∣∣∣∣ : |x|⩽ c
]

+EQ
[∣∣∣∣log(1+ x)− (x− x2

2
)

∣∣∣∣ : |x|> c
]

⩽
c3

3
+EQ

[∣∣∣∣log(1+ x)− (x− x2

2
)

∣∣∣∣ : |x|> c
]

⩽
c3

3
+aP(|x|> c).

Clearly, the smaller the parameter c, the smaller the first term c3

3 . Although the probability

P(|x|⩾ c) can become larger given a smaller value of c, this probability itself is usually very small.

In total, the upper bound of EQ
[
|log(1+ x)− (x− x2

2 )|
]

is very small.

Numerically, if choose |x|⩽ 1% for the monthly return (annual return bound is 12 percent), and

the average VIX is 15%, then

EQ
t

[∣∣∣∣log(1+ x)− (x− x2

2
)

∣∣∣∣]⩽ 1
3
(0.01)3,

and

∣∣∣EQ
t [log(1+ x)]

∣∣∣= T
2

V IX2 =
1

2×12
(0.15)2.

Therefore,

∣∣∣∣∣∣
EQ

t

[∣∣∣log(1+ x)− (x− x2

2 )
∣∣∣]

EQ
t [log(1+ x)]

∣∣∣∣∣∣⩽ 1
3
(0.01)3 × (2×12)

1
0.152 = 0.04%.

If we choose a large number for the month return, |x|⩽ 2%, which means the annual return is
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bounded between [−24%,24%], and VIX = 20%, then

∣∣∣∣∣∣
EQ

t

[∣∣∣log(1+ x)− (x− x2

2 )
∣∣∣]

EQ
t [log(1+ x)]

∣∣∣∣∣∣⩽ 0.16%.

Therefore, the approximation formula is sufficiently accurate for the market data.

Appendix B Proof of Proposition 4.1

Before proving Proposition 4.1, we prove two results first. The first one presents an alternative

expression of forward return in terms of expected value of future options’ values. The second one

is on a relationship between option gamma and strike gamma for a general option.

Proposition Appendix B.1. Suppose that interest rates are deterministic. Then

Et [Rt+1→t+2] =
2

R f ,t→t+1St

∫
∞

0
EQ

t

[
Ct+1(St+1,K)

St+1

]
dK, (B1)

where

• St = underlying index price observed at time t;

• Ct+1 = the call option price at time t +1.

Proof. Suppose that interest rates are deterministic. By Equation (1), the expected future return

under the real-world probability measure P can be written as

Et [Rt+1→t+2] =
1

R f ,t→t+2
EQ

t

[
(Rt+1→t+2)

2 ×Rt→t+1

]
, (B2)

=
1

R f ,t→t+2
EQ

t

{
EQ

t+1

[
(Rt+1→t+2)

2
]
×Rt→t+1

}
, (B3)
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where

EQ
t+1

[
(Rt+1→t+2)

2
]
= EQ

t+1

[(
St+2

St+1

)2
]
=

1
S2

t+1
EQ

t+1
[
S2

t+2
]
. (B4)

Plug back into the equation and we have

Et [Rt+1→t+2] =

(
1

R f ,t→t+2

)(
1
St

)
EQ

t

{
1

St+1
EQ

t+1
[
S2

t+2
]}

. (B5)

We use Equation (3) for EQ
t+1
[
S2

t+2
]
, obtaining

1
R f ,t+1→t+2

EQ
t+1
[
S2

t+2
]
= 2

∫
∞

0

1
R f ,t+1→t+2

EQ
t+1
[
(St+2 −K)+

]
dK (B6)

= 2
∫

∞

0
Ct+1(St+1,K)dK, (B7)

where Ct+1(St+1,K) denotes the price of a call option at time t + 1 that will expire at time t + 2

with a strike price K.

Then, by Fubini’s theorem, we have,

Et [Rt+1→t+2] =

(
1

R f ,t→t+2

)(
1
St

)
EQ

t

{
1

St+1

[
2R f ,t+1→t+2

∫
∞

0
Ct+1(St+1,K)dK

]}

=
2

R f ,t→t+1St

∫
∞

0
EQ

t

[
Ct+1(St+1,K)

St+1

]
dK. (B8)

□

The following result could be known as folklore in derivative literature. However, since we do

not find an appropriate reference for this result, we present its complete proof.

Lemma Appendix B.1. Let C′′ denote the second-order partial derivative of call option price with

respect to the underlying price, and C̈ the second-order partial derivative with respect to the strike,
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then we have

S2C′′(S,K) = K2C̈(S,K). (B9)

Proof. Let C′ denote the partial derivative of call option price with respect to (w.r.t.) the underlying

price, Ċ the partial derivative w.r.t. strike, and Ċ′ the second-order partial derivative w.r.t. strike

and underlying.

We first demonstrate that C(S,K) is homogeneous of degree 1. In other words, C(aS,aK) =

aC(S,K), for all real numbers a > 0. To see it, by the risk-neutral pricing equation,

C(S,K) = e−r(T−t)EQ
t
[
(ST −K)+|St = S

]
. (B10)

Using the formula (ax)+ = ax+, for all x and a > 0, the payoff is (aST −aK)+ = a(ST −K)+.

Then by the risk-neutral pricing equation again,

C(aS,aK) = e−r(T−t)EQ
t
[
(aST −aK)+|aSt = aS

]
= ae−r(T−t)EQ

t
[
(ST −K)+|St = S

]
= aC(S,K).

(B11)

Accordingly, for any a,b > 0, we have

abC(S,K) =C(abS,abK). (B12)

Take ∂

∂a on both sides of Eq. (B12) and set a = 1

bC(S,K) = bSC′(bS,bK)+bKĊ(bS,bK). (B13)

First, evaluate Equation (B13) at b = 1

C(S,K) = SC′(S,K)+KĊ(S,K). (B14)
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Take partial derivative ∂

∂K

Ċ(S,K) = SĊ′(S,K)+KC̈(S,K)+Ċ(S,K), (B15)

and we obtain

SĊ′(S,K)+KC̈(S,K) = 0. (B16)

Second, take first ∂

∂a on both sides of Equation (B13), and then ∂

∂b on the resulting equation,

and set a = b = 1, we obtain

C(S,K) = SC′(S,K)+S2C′′(S,K)+2SĊ′(S,K)K +KĊ(S,K)+K2C̈(S,K). (B17)

We next equate the right-hand sides of Equations (B14) and (B17) and obtain

S2C′′(S,K)+2SĊ′(S,K)K +K2C̈(S,K) = 0. (B18)

Plug the Equation (B16) into the equation above,

S2C′′(S,K) = K2C̈(S,K), (B19)

and we obtain Lemma Appendix B.1. □

Now we are ready to prove Proposition 4.1.

Proof of Proposition 4.1

To compute the right-hand side of Equation (B8), and thus Et [Rt+1→t+2], write

C(S,K) =
1

R f

∫
∞

K
(z−K)q(z|S)dz, (B20)

where q(·) is the conditional density of St+1 under the risk-neutral probability measure Q and R f

denotes the gross risk-free return. Now let Ċ denote the partial derivative with respect to strike.
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Then

Ċ(S,K) =
1

R f
(
∫ K

0
q(z|S)dz−1). (B21)

Write Π(K|S) =
∫ K

0 q(z|S)dz for the conditional distribution under Q, that is, Π(K|S) = Q(St+1 ⩽

K|St = S). Then, Π(K|S) = 1+R f Ċ(S,K), and dΠ(K|S) = R f C̈(S,K)dK.

Hence,

∫
∞

0
EQ

t

[
Ct+1(St+1,K)

St+1

]
dK =

∫
∞

0

∫
∞

0

Ct+1(L,K)

L

(
R f ,t→t+1C̈t(St ,L)dL

)
dK

= R f ,t→t+1

∫
∞

0

∫
∞

0

Ct+1(L,K)

L
C̈t(St ,L)dLdK

= R f ,t→t+1S2
t

∫
∞

0

∫
∞

0

Ct+1(L,K)

L
C

′′
t (St ,L)

L2 dLdK, (B22)

where the last line substitutes gamma for strike-gamma using C′′(S,K) = K2

S2 C̈(S,K), as specified

by Lemma Appendix B.1.

Plug back into Equation (B8)

Et [Rt+1→t+2] = 2St

∫
∞

0

C
′′
t (St ,L)

L3


∫

∞

0
Ct+1(L,K)dK︸ ︷︷ ︸

inside-integral, I(L)

 dL, (B23)

and we obtain Proposition 4.1. □

Appendix C Nonzero Risk-neutral Relation

In this section, we provide a simple example to demonstrate that the risk-neutral correlation

between the spot return and the future return square, corrQt
[
Rt→t+1,R2

t+1→t+2
]
, can be nonzero.

At time t = 0,1,2, let the risk-free rate of return be zero, and the risky asset returns during

the two consecutive periods be Rt→t+1 = R1 = 1+ ε and Rt+1→t+2 = R2 = 1+ εη , respectively.

Suppose F1 is generated by ε , and F2 is by {ε,η}, where both ε and η are mean zero and
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independent of one another. Immediately, we have

E [R1] = 1+E [ε] = 1, (C1)

E1 [R2] = 1+E1 [εη ] = 1+ εE1 [η ] = 1, (C2)

since E1 [η ] = E [η ] = 0. Therefore, the conditional expectation operator, E[.], is under the risk-

neutral probability measure Q.

We next compute the (risk-neutral) covariance between the spot return and the future return

square, Cov(R1,R2
2). First,

E
[
R2

2
]
= E

[
1+2εη + ε

2
η

2]= 1+E
[
ε

2
η

2] (C3)

Second,

E
[
R1R2

2
]
= E

[
(1+ ε)(1+2εη + ε

2
η

2)
]
= E

[
1+2εη + ε

2
η

2
ε +2ε

2
η + ε

3
η

2] , (C4)

= 1+E
[
ε

2
η

2]+E
[
ε

3
η

2] . (C5)

Hence,

Cov(R1,R2
2) = E

[
R1R2

2
]
−E [R1]E

[
R2

2
]
, (C6)

= E
[
ε

3
η

2] , (C7)

= E
[
ε

3]E[η2] . (C8)

In other words,

corr(R1,R2
2) ̸= 0 if and only if E

[
ε

3] ̸= 0. (C9)

If we choose ε ∼ η (the same distribution), in theory, the risk-neutral correlation corr(R1,R2
2)

can be any number (with the same sign as E
[
ε3]), as long as E

[
ε3] ̸= 0.
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Table 1: Summary statistics of VIX and VIX-derivatives

This table provides the summary statistics for VIX, VIX futures, and implied volatility of VIX options. The
sample period is from March 26, 2004 (February 24, 2006) to December 31, 2019 for VIX futures (options).

Mean Std dev p25 Median p75 Skew Kurt

Panel A: VIX index

18.869 9.013 13.150 16.210 21.490 2.556 11.963

Panel B: VIX futures prices

Maturity (in months)

1 19.417 8.157 14.300 16.883 22.100 2.308 9.896

2 20.144 7.328 15.350 17.800 23.000 1.946 7.809

3 20.767 6.596 16.286 18.558 23.702 1.610 6.072

4 21.072 6.260 16.682 18.925 24.107 1.428 5.097

6 21.578 5.835 17.355 19.504 24.669 1.179 4.024

9 22.039 5.874 17.993 20.130 25.579 0.518 3.880

Panel C: Implied volatility of VIX options

Maturity (in months)

1 Put 0.891 0.168 0.789 0.871 0.974 1.268 8.293
Call 0.893 0.164 0.788 0.875 0.978 1.139 7.033

2 Put 0.790 0.111 0.716 0.795 0.858 0.453 6.279
Call 0.789 0.110 0.714 0.794 0.857 0.444 5.125

3 Put 0.717 0.089 0.660 0.724 0.776 0.159 4.776
Call 0.716 0.089 0.657 0.723 0.774 0.245 5.208

4 Put 0.668 0.078 0.616 0.673 0.720 0.070 3.692
Call 0.667 0.078 0.613 0.673 0.719 0.269 5.711

6 Put 0.630 0.071 0.579 0.635 0.678 0.067 3.396
Call 0.628 0.072 0.576 0.634 0.676 0.153 4.176

9 Put 0.617 0.073 0.568 0.622 0.667 0.003 3.247
Call 0.615 0.074 0.565 0.622 0.665 -0.019 3.161
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Table 2: Expected future one-month return from the VIX-derivatives
This table provide the summary statistics for the expected future one-month return from the VIX-derivatives.
The maturities are 1, 2, 3, 4, 6 and 9 months. We report mean, median, standard deviation, skewness
and kurtosis. Panel A, B, and C consider three different sample periods: (i) full sample: February 24,
2006−December 31, 2019; (ii) Bad times (NBER recessions): January 1, 2008−June 30, 2009; and (iii)
Good times (post-NBER recessions): July 1, 2009−December 31, 2019. All results are annualized and
expressed in percentage.

Avg. Ret (%) Std dev (%) p25 p50 p75 Skew Kurt

Panel A: Sample period: February 24, 2006−December 31, 2019

Maturity (in months)

1 5.891 5.202 2.813 4.557 6.887 3.810 22.653

2 6.254 4.419 3.386 5.160 7.392 3.077 16.245

3 6.602 3.802 3.993 5.680 7.845 2.530 12.536

4 6.853 3.553 4.350 5.951 8.102 2.155 9.718

6 6.818 3.371 4.386 5.780 8.204 1.895 7.380

9 7.197 3.891 5.093 6.412 9.116 0.837 4.739

Panel B: Bad times (NBER recessions): January 1, 2008−June 30, 2009

Maturity (in months)

1 14.952 10.142 7.527 9.864 20.475 1.359 4.103

2 14.071 7.860 7.959 10.163 19.375 1.131 3.365

3 13.178 6.205 8.286 10.262 18.021 1.075 3.290

4 12.915 5.440 8.528 10.385 17.486 0.868 2.660

6 12.329 4.801 8.435 9.718 17.007 0.712 2.086

9 11.859 4.436 8.549 9.702 16.067 0.997 4.787

Panel C: Good times (post-NBER recessions): July 1, 2009−December 31, 2019

Maturity (in months)

1 4.332 2.477 2.569 3.683 5.233 2.056 8.809

2 4.891 2.399 3.066 4.357 5.753 1.574 5.815

3 5.442 2.356 3.582 4.968 6.331 1.330 4.548

4 5.781 2.360 3.939 5.294 6.714 1.289 4.395

6 6.409 2.451 4.499 5.724 7.366 1.174 3.754

9 7.446 2.931 5.360 6.439 9.011 1.023 3.683
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Table 3: Market autocorrelation on S&P 500 index from the derivatives
Panels A and C report the statistics of the conditional market autocorrelation,

corrt(Rt→t+T1 ,Rt+T1→t+T1+T2), (C10)

and the conditional correlation between two spot returns,

corrt(Rt→t+T1 ,Rt→t+T1+T2), (C11)

on S&P 500 index from the derivatives, respectively. For the two correlation coefficients, we also compute
them from historical stock returns in Panels B and D, respectively. The sample period is from February 24,
2006 to December 31, 2019. *** indicates significance at the 1% level.

T1 1 month 2 months 3 months 4 months 6 months 9 months
T2 1 month 1 month 1 month 1 month 1 month 1 month

Panel A: corrt(Rt→t+T1,Rt+T1→t+T1+T2) from derivatives

Mean -0.209*** -0.279*** -0.362*** -0.313*** -0.268*** -0.257***

p25 -0.290 -0.364 -0.462 -0.383 -0.318 -0.346

p50 -0.196 -0.238 -0.346 -0.270 -0.251 -0.255

p75 -0.087 -0.151 -0.229 -0.194 -0.199 -0.204

Skew -0.944 -0.645 0.252 -1.364 0.018 1.048

Kurt 5.467 7.696 8.711 5.814 8.116 8.160

Panel B: corrt(Rt→t+T1 ,Rt+T1→t+T1+T2) by realized historical returns

ρ̂ 0.093 0.044 0.079 0.118 0.035 0.029

Panel C: corrt(Rt→t+T1 ,Rt→t+T1+T2) from derivatives

Mean 0.829*** 0.944*** 0.978*** 0.982*** 0.976*** 0.971***

p25 0.734 0.912 1.000 1.000 1.000 1.000

p50 0.850 0.997 1.000 1.000 1.000 1.000

p75 0.963 1.000 1.000 1.000 1.000 1.000

Skew -0.765 -8.093 -9.046 -4.847 -4.448 -3.833

Kurt 3.151 114.762 111.636 31.996 24.396 18.117

Panel D: corrt(Rt→t+T1,Rt→t+T1+T2) by realized historical returns

ρ̂ 0.746*** 0.841*** 0.889*** 0.919*** 0.944*** 0.961***
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Table 4: Market timing
This table reports the investment value of timing the previous cumulative market excess return and
conditional market autocorrelation. We consider six reversal signals, S̃t,K , for K = 1, 2, 3, 4, 6, and 9
months such that,

S̃t,K [rt−K→t ,corrt−k(rt−K→t ,rt→t+1)] =


1, if rt−K→t > 0 & corrt−k(rt−K→t ,rt→t+1)> 0,
1, if rt−K→t < 0 & corrt−k(rt−K→t ,rt→t+1)< 0,
0, otherwise,

where rt−K→t denote the cumulative excess returns over the past K months, and corrt−k(rt−K→t ,rt→t+1) is
the conditional autocorrelation from the derivatives computed at time t −K.

The single timing strategy, η
[
S̃t,1
]

takes a long position in the market when the one-month reversal
signal, S̃t,1 [rt−1→t ,corrt−1(rt−1→t ,rt→t+1)] equals one, and invests in the risk-free asset otherwise. The
combination timing strategy, η

[
S̃t,K ,∀K;ξ

]
utilizes all six reversal signals, and takes a long position in the

market only if at least ξ out of six reversal signals take values of ones. We consider ξ to be 1, 2, 3, 4, and 5.

Panel A and B consider two different out-of-sample periods: 1) full sample period; 2) NBER recession
period: January 2008−June 2009. The average value, standard deviation, and return-loss are expressed in
percentage, and the performance fee is in basis points. All results are annualized.

Avg ex-Ret (%) Std dev (%) SRatio CEQ SRatio Diff CEQ Diff Ret-Loss (%) Fee (bps)

Panel A: Full sample period

Buy and hold 5.489 14.789 0.371 0.044

η
[
S̃t,1
]

4.433 9.616 0.461 0.040 0.090 -0.004 -0.863 -74.433

η
[
S̃t,K,∀K;ξ = 2

]
2.389 11.175 0.214 0.018 -0.157 -0.026 1.759 -286.856

η
[
S̃t,K,∀K;ξ = 3

]
1.997 9.986 0.200 0.015 -0.171 -0.029 1.709 -319.872

η
[
S̃t,K,∀K;ξ = 4

]
1.733 9.343 0.185 0.013 -0.186 -0.031 1.735 -343.248

η
[
S̃t,K,∀K;ξ = 5

]
3.347 7.166 0.467 0.031 0.096 -0.013 -0.687 -172.763

Panel B: NBER recessions: January 2008−June 2009

Buy and hold -32.304 25.565 -1.264 -0.356

η
[
S̃t,1
]

-7.027 14.420 -0.487 -0.081 0.776 0.275 -11.194 2630.850

η
[
S̃t,K,∀K;ξ = 2

]
-23.918 20.746 -1.153 -0.261 0.111 0.095 -2.297 890.633

η
[
S̃t,K,∀K;ξ = 3

]
-11.842 18.780 -0.631 -0.136 0.633 0.220 -11.888 2116.325

η
[
S̃t,K,∀K;ξ = 4

]
-11.842 18.780 -0.631 -0.136 0.633 0.220 -11.888 2116.325

η
[
S̃t,K,∀K;ξ = 5

]
-0.456 11.728 -0.039 -0.011 1.225 0.344 -14.364 3304.994
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Table 5: Market timing by VIX-Gamma
This table reports the single timing strategy based on the 1-month reversal signal identified from the VIX-
Gamma approach. Panel A and B consider two different out-of-sample periods: 1) full sample period; 2)
NBER recession period: January 2008−June 2009. The average value, standard deviation, and return-loss
are expressed in percentage, and the performance fee is in basis points. All results are annualized. The
statistical significance of the Sharpe ratio difference (SRatio Diff) and certainty equivalent return difference
(CEQ Diff) are evaluated based on p-values using the Jobson and Korkie’s (1981) methodology described
in Section 2 of DeMiguel, Garlappi, and Uppal (2009). ** and * indicate significance at the 5% and 10%
levels, respectively.

Avg ex-Ret (%) Std dev (%) SRatio CEQ SRatio Diff CEQ Diff Ret-Loss (%) Fee (bps)

Panel A: Full sample period

Buy and hold 5.489 14.789 0.371 0.044

VIX-Gamma 5.659 11.322 0.500 0.050 0.129* 0.006** -1.456 39.453

Panel B: NBER recessions: January 2008−June 2009

Buy and hold -32.304 25.565 -1.264 -0.356

VIX-Gamma 6.538 19.480 0.336 0.046 1.599 0.402 -31.153 3948.062
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Table 6: Implied risk-neutral correlation
This table reports the average value of the risk-neural correlation, θt = corrQt

(
Rt→t+1,R2

t+1→t+2
)
, that are

“calibrated” from the VIX-Gamma approach. We compute the average values either by moving-averages
(MAs) or by the calendar years.

By MAs: 6-month 1-year 3-year 5-year Overall

-0.046 -0.029 0.006 0.013 -0.060

By years: 2006−2009 2010−2011 2012−2014 2015−2017 2018−2019

-0.059 -0.281 0.049 -0.092 0.040
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Figure 1: The term structure of expected future one-month return
This figure plots the term structure of the expected future one-month returns by VIX-derivatives. The figure shows the unconditional average return
(solid line), the average return in bad times from January 2008 to June 2009 during the NBER recessions (dashed line), and the average return in
good times during the post NBER recessions (dash-dotted line).
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Figure 2: Expected future one-month returns during the NBER recessions
This figure plots the expected one-month returns in one, three, and six months by VIX-derivatives during the NBER recessions from January 1, 2008
to June 30, 2009. All results are annualized and expressed in percentage.
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Figure 3: Expected future one-month returns post the NBER recessions
This figure plots the expected one-month returns in one, three, and six months by VIX-derivatives during the post NBER recession period from July
1, 2009 to December 31, 2019. All results are annualized and expressed in percentage.
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Figure 4: Market autocorrelation on S&P 500 index from VIX-derivatives
This figure plots the real-time forward-looking 1-month to 1-month market autocorrelation, corrt(Rt→t+1mo,Rt+1mo→t+2mo), on S&P 500 index
recovered from VIX-derivatives.
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(a) Sample period 1871 - 2019 (b) Sample period 1920 - 2019

(c) Sample period 1970 - 2019 (d) Sample period 1990 - 2019

Figure 5: Realized market autocorrelation between adjacent calendar months
This figure plots the realized month-to-month autocorrelation of the S&P 500 monthly returns between two
consecutive months. The area between the dotted line represents the 90% confidence interval for the sample
autocorrelation by assuming the standard error equals one over the square root of the sample size. We
consider four time periods: (a) 1871 – 2019, (b) 1920 – 2019, (c) 1970 – 2019, (d) 1990 – 2019. The data
prior to January 1927 are obtained from Robert Shiller’s website.
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Figure 6: Month-to-month market autocorrelation by derivatives and historical data
This figure plots the month-to-month autocorrelation on S&P 500 index between two consecutive months. By historical return, we compute the
sample autocorrelation using historical monthly return data; by VIX-approach, we compute corrt(Rt→t+1mo,Rt+1mo→t+2mo) by derivative data on the
first day of each month, and then take the average within January, February, ..., and December. The sample period is from 2006 to 2019.
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Figure 7: Market timing during NBER recessions
This figure plots the realized out-of-sample excess returns generated from either buy-and-hold strategy (benchmark) or the market timing strategy over
the NBER recessions from January 2008 to June 2009. The market timing strategy, η

[
S̃t,1
]

takes a long position in the market when the one-month
reversal signal, S̃t,1 [rt−1→t ,corrt−1(rt−1→t ,rt→t+1)] equals one, and invests in the risk-free asset otherwise. Mathematically,

S̃t,1 [rt−1→t ,corrt−1(rt−1→t ,rt→t+1)] =


1, if rt−1→t > 0 & corrt−1(rt−1→t ,rt→t+1)> 0,
1, if rt−1→t < 0 & corrt−1(rt−1→t ,rt→t+1)< 0,
0, otherwise,

where rt−1→t denote the cumulative excess returns over the past 1 month, and corrt−1(rt−1→t ,rt→t+1) is the conditional autocorrelation from VIX-
approach computed at time t −1.
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(a) Call option at time t +1 (b) Call option at time t

Figure 8: Calculating the two-integral from call option prices
This figure illustrates the calculation of the two-integral in Proposition 4.1 where

Et [Rt+1→t+2] = 2St

∫
∞

0

C
′′
t (St ,L)

L3


∫

∞

0
Ct+1(L,K)dK︸ ︷︷ ︸

inside-integral, It+1(L), known at t +1

 dL.

At time t in the right-side panel, we plot the call option price, Ct(St ,L) for a sequence of strike prices, L ⩾ 0, assuming St = 100, r f = 5%, σ = 25%,
and T = 1 year. At time t +1 in the left-side panel, we plot the call option prices, Ct+1(L,K), given each L “observed” at time t in the right-side panel
as the new underlying prices, and for a sequence of strikes, K ⩾ 0.
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Figure 9: Market timing by VIX-Gamma approach during NBER recessions
This figure plots the realized out-of-sample excess returns generated from either buy-and-hold strategy (benchmark) or the market timing strategy over
the NBER recessions from January 2008 to June 2009. The market timing strategy, η

[
S̃t,1
]

takes a long position in the market when the one-month
reversal signal, S̃t,1 [rt−1→t ,corrt−1(rt−1→t ,rt→t+1)] equals one, and invests in the risk-free asset otherwise. Mathematically,

S̃t,1 [rt−1→t ,corrt−1(rt−1→t ,rt→t+1)] =


1, if rt−1→t > 0 & corrt−1(rt−1→t ,rt→t+1)> 0,
1, if rt−1→t < 0 & corrt−1(rt−1→t ,rt→t+1)< 0,
0, otherwise,

where rt−1→t denote the cumulative excess returns over the past 1 month, and corrt−1(rt−1→t ,rt→t+1) is the conditional autocorrelation from VIX-
Gamma approach computed at time t −1.
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Figure 10: Market timing by VIX-Gamma approach
This figure plots the realized out-of-sample excess returns generated from either buy and hold strategy (benchmark) or market timing strategy over
the out-of-sample evaluation period from 2006 to 2019. The market timing strategy, η

[
S̃t,1
]

takes a long position in the market when the one-month
reversal signal, S̃t,1 [rt−1→t ,corrt−1(rt−1→t ,rt→t+1)] equals one, and invests in the risk-free asset otherwise. Mathematically,

S̃t,1 [rt−1→t ,corrt−1(rt−1→t ,rt→t+1)] =


1, if rt−1→t > 0 & corrt−1(rt−1→t ,rt→t+1)> 0,
1, if rt−1→t < 0 & corrt−1(rt−1→t ,rt→t+1)< 0,
0, otherwise,

where rt−1→t denote the cumulative excess returns over the past 1 month, and corrt−1(rt−1→t ,rt→t+1) is the conditional autocorrelation from VIX-
Gamma approach computed at time t −1.
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